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n € N, p prime

Let I be a graph on the vertices {1, ...,n} with adjacency matrix

A= ()1 j<n

such that:
ai; € ) (weighted)
aij = aji (undirected)
a; =0 (no loops)
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n € N, p prime

Example (n = 5, p =«

2
N > 01 210
1 3 1 0 2 00
A=12 2 0 1 0
1 01 0 2
B 000 20
5 4
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Definition

For every vertex k and ¢ € ), \ {0}, define
= fr(T) =T’ where
aj; = aij + agagr (i # j)
= gic(T') =T where

o= 1C % ifi=korj=k
aij else
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Definition

For every vertex k and ¢ € ), \ {0}, define
= fr(T) =T’ where
Gy = agy -+ agaze (@ # 5)
= gic(T') =T where

, _Jcray ifi=korj=k
aij else

Clifford group equivalence

I’ ~¢ I" if there is a sequence of f; and gy, . that converts I into I''.
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Example (p = 2
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Example (p = 2
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Example (p = 2

— local complementation
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Example (p = 3

91,2 1 3
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How many equivalence classes does ~¢ have?
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UNIVERSITY

How many equivalence classes does ~¢ have?

— w.lo.g. I" connected
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How many equivalence classes does ~¢ have?

Strategies:
= Graph of graphs
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How many equivalence classes does ~¢ have?

Strategies:
= Graph of graphs
= Sorting by the number of edges
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How many equivalence classes does ~¢ have?

Strategies:
= Graph of graphs
= Sorting by the number of edges

®m Recursion
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O

How many equivalence classes does ~¢ have?

" 6|71 8| 9 12
p
2 1] 26 | 101 | 440 1274068
3 2173 2 | 2 ?
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H = (CP)®"
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H = (CP)®"

Quantum error-correcting code

An ((n, k, d)), quantum error-correcting code is a k-dimensional
subspace of H for which all errors of weight at most d — 1 can be
detected.
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detected.

Stabiliser code
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H = (CP)®"

Quantum error-correcting code

An ((n, k, d)), quantum error-correcting code is a k-dimensional
subspace of H for which all errors of weight at most d — 1 can be
detected.

Stabiliser code

C={peHH|Syp=rforall S €S} whereS <P,

P, is the Pauli group 14/24
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p=2

Pauli matrices
01 0 —1 1 0
X_(l O), Y—<Z- 0) and z_<0 _1>

Pauli group

P =(X,Y,Z)
={+], +il, £ X, +iX, +Y, +iY, +Z, +iZ}

15/24



Stabiliser codes GHENT @
UNIVERSITY

Shift operator

0 0 1
10 0
X=101
0
0 0 10
Clock operator
10 0 0
0 0
Z = :
00 -+ w2 0
0 0 0 wp !
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Pauli group

P i= {C*szz\ A=1,....2pand 7,7 € (Fp)n}

where X¥Z7 := X" 75 @ ... @ X%n Z%n
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Pauli group

P i= {C*szz\ A=1,....2pand 7,7 € (Fp)n}

where X¥Z7 := X" 75 @ ... @ X%n Z%n
ZX = wXZ
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Stabiliser code

C={peH|Syp=rforall S €S} whereS <P,
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Stabiliser code

C={ypeHH|SY=1forall S € S} whereS <P,

Stabiliser group
S={PeP,|Pp=1forally €C}
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S= <C>\ini Z2i>1§i§n—k
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— (N X T 7% i —
S—<§ XxZZ>1Si§’n—k = dimC =p
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S = (M XTiZH) — dimC = p"

1<i<n—k
M r11 s Tin Z11 s Zin
A2 To1 v Top Z21 ot Zop
and G =
An—k Ipn—kl1 " Tp—kn | *n—kl °°° Zn—kn
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S = (M XTiZH) — dimC = p"

1<i<n—k
M r11 s Tin Z11 s Zin
A2 To1 v Top Z21 ot Zop
and G =
An—k Ipn—kl1 " Tp—kn | *n—kl °°° Zn—kn

S=(XZ*®2ZxI,
XQ®XZ®Z)
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Clifford group

Cni={U € (C”7)*" |UU" = Tand U'PU € P, forall P € P, }

Clifford group equivalence

C~e C +— S =U'SU for some U € C,,
modulo a permutation of the factors in the tensor product
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Clifford group

Co 1= {U € (C7")*" | UUt = Tand UTPU € P, forall P € P, }

Clifford group equivalence

C~e C +— S =U'SU for some U € C,,
modulo a permutation of the factors in the tensor product

Example

X and Z are Clifford operators
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x “ e x Z “ e z
’ From now on, let £ = 0. 1 n | <11 In
Tl ot Tap | 221t Z2n
G p—
Tnl o Tnn Znl Tt Znn
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x “ e x Z “ e z
‘ From now on, let k£ = 0. ‘ B In | #11 n
o Tor -0 Tap | X2l cc Z2n
Tnl o Tnn Znl Tt Znn

Theorem

C is equivalent to a code where G is of the form (I |A), with A an
adjacency matrix of a weighted graph.
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x “ e x Z “ e z
‘ From now on, let k£ = 0. ‘ B In | #11 n
o Tor -0 Tap | X2l cc Z2n
Tnl o Tnn Znl Tt Znn

Theorem

C is equivalent to a code where G is of the form (I |A), with A an
adjacency matrix of a weighted graph.

1 0 0] 0 a2 A1n

0 1 0 a1 0 A2np
G = )

00 L] an Gn2 0
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x “ e :L' Z “ e z
‘ From now on, let k£ = 0. ‘ B In | #11 n
o To1 - Ton | B2l Zon
Tnl o Tnn Znl Tt Znn
Theorem

C is equivalent to a code where G is of the form (I |A), with A an
adjacency matrix of a weighted graph.

1 0 0| 0 ais Q1n

0 1 0 a1 0 e A2np
— graph state G = .

0 0 L] an apo 0

21/24



Stabiliser codes GHENT @
UNIVERSITY

Example (p = 2)
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Example (p = 2)

! 2 1000[0101
c_|o1r00f1 o010

001 0[0101

R 000 1/1 010
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Example (p = 2)

1000[0101
c_|o1r00f1 o010

001 0[0101

R 000 1/1 010

S=(X®ZIR® Z,
ZRX®Z®I,
IRZRX®Z,
ZRI®Z®X)
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Example (p = 2)

1 0000101

|0 1001010

0010[0101

K 0001|1010

S=(X®Z®Ix Z, Cisa((4,1,2)) code
ZXQ®ZQI,
IRZRX® Z,
ZRI®RZ®X)
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Theorem

Let C and C’ be one-dimensional stabiliser codes with stabiliser
groups S and 8’ and graphs I" and I respectively. Then

CroC —=T~cT’
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Theorem

Let C and C’ be one-dimensional stabiliser codes with stabiliser
groups S and 8’ and graphs I" and I respectively. Then

CroC —=T~cT’

Question

How many equivalence classes does ~¢ have?

Strategies:
= Graph of graphs
= Sorting by the number of edges
= Recursion

= Explicit Clifford operator 23/24
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Thank you for listening!
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10 --- 0] 0 ap - am
0 1 01 as 0 LN ¢ 57
G =
00 -+ 1|an ana -+ 0
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110 --- O 0 aia| -+ Qin
G— 0 |1 0 a1 0 e A92p
ofof --- 1 ani |an2| - -- 0

— lines in PG(n — 1, p)
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110 --- O 0 aia| -+ Qin
G— 0|1 0 a1 0 e A2n
0 (0f--- 1 Anpl |An2| - 0

— lines in PG(n — 1, p)

— quantum set of lines

X is a quantum set of lines of PG(n — k — 1,2) iff every
codimension 2 subspace is skew to an even number of the lines in X'.
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